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1 Mathematical Institute, Silesian University in Opava, Bezručovo nám. 13, 746 01 Opava, Czech
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Abstract
The geometric theory of non-holonomic systems on fibred manifolds is applied
to describe the motion of a particle within the theory of special relativity.
General motion equations for material particles subjected to potential forces
are found. They cover, as particular cases, standard motion equations as well
as a generalization of the special relativity theory proposed by Dicke. Moreover,
they offer new possibilities for studying the dynamics of relativistic particles
interacting with an electromagnetic and/or a scalar field.

PACS numbers: 0330, 0240

1. Introduction

Classical (time-dependent) mechanical systems represent typical examples to be
mathematically modelled on fibred manifolds over a one-dimensional basis—the time axis,
and copies of the configuration space as the fibres. On the other hand, in relativistic mechanics
the time variable has no physically preferred role. This is the reason why it is believed
that fibred manifolds are not quite appropriate underlying geometrical structures for such
‘non-parametrized’ problems, and why some authors suggest to replace fibred manifolds by
manifolds of contact elements (cf [1, 2]).

However, bearing in mind recent results of the geometric theory of non-holonomic
mechanical systems on fibred manifolds (cf, e.g., [3–14]), and taking into account the
relativistic condition

gσν u
σuν = 1 (1)

on the 4-velocity of a material particle, strongly suggests the idea of understanding the
relativistic particle as a good example of a non-holonomic mechanical system on an
(appropriately chosen) fibred manifold. The aim of this paper is to study this possibility,
and to provide explicit calculations. As a result we obtain general motion equations for a
material relativistic particle, moving in an electromagnetic field and in the field of a scalar
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potential. These equations naturally include the so-called induced constraint force. We
discuss the meaning of this force in different formulations of the special relativity theory.
In particular, it appears that the standard motion equations come from the requirement that
the induced constraint force vanishes identically. On the other hand, the case of a non-zero
induced constraint force is in accordance with a generalization of the relativity theory due to
Dicke [15]. Thus, the understanding of the relativistic particle as a non-holonomic system on
a fibred manifold provides a unified framework for both the standard and Dicke formulation of
the relativity theory. Moreover, it provides us with new possibilities of interaction of relativistic
particles with external fields. One of the most interesting consequences is the fact that a scalar
field has a direct influence on the electromagnetic interaction.

2. Geometric theory of mechanical systems with non-holonomic constraints

In this section we recall briefly basic notions and results of the general theory of mechanical
systems with non-holonomic constraints as formulated in [5, 6].

Letπ : Y → X be a fibred manifold with a one-dimensional base X, and letπ1 : J 1Y → X

and π2 : J 2Y → X denote its first and second jet prolongation, respectively. Other commonly
used projections are π1,0 : J 1Y → Y , π2,0 : J 2Y → Y and π2,1 : J 2Y → J 1Y . Let
dim Y = m + 1 (i.e. m � 1 the fibre dimension). Denote by (V ,ψ), ψ = (t, qσ ), where
1 � σ � m, a fibred chart on Y, and by (V1, ψ1), ψ1 = (t, qσ , q̇σ ), where V1 = π−1

1,0 (V )

(respectively, (V2, ψ2), ψ2 = (t, qσ , q̇σ , q̈σ ) where V2 = π−1
2,0(V )) is the associated fibred

chart on J 1Y (respectively, J 2Y ). By a section of the fibred manifold π we shall mean a
mapping γ : X → Y , defined on an open subset I in X, such that π ◦γ is the identity mapping
of I . The first (respectively, second) jet prolongation of a section γ of π is denoted by J 1γ

(respectively, J 2γ ); it is a section of the fibred manifold π1 (respectively, π2). If γ is in a fibred
chart represented by γ = (γ 0, γ σ )where γ 0(t) = t , γ σ (t) = qσ ◦γ (t), then J 1γ (respectively,
J 2γ ) is represented by J 1γ = (γ 0, γ σ , γ̄ σ ) (respectively, J 2γ = (γ 0, γ σ , γ̄ σ , ¯̄γ σ )), where

γ̄ σ ≡ q̇σ ◦ J 1γ = dγ σ

dt
= d(qσ ◦ γ )

dt
¯̄γ σ ≡ q̈σ ◦ J 2γ = dγ̄ σ

dt
= d2γ σ

dt2
= d2(qσ ◦ γ )

dt2
.

A section δ of π1 is called holonomic if it is the 1-jet prolongation of a section γ of π , i.e.
δ = J 1γ .

Recall that a vector field ξ on Y is called projectable if it projects onto a vector field on
the base X. A projectable vector field ξ on Y has the chart expression

ξ = ξ 0(t)
∂

∂t
+ ξσ (t, qν)

∂

∂qσ

i.e. the component at ∂/∂t is a function of the base coordinate t only. The first jet prolongation
of a projectable vector field ξ is a vector field on J 1Y which in fibred coordinates reads as
follows:

J 1ξ = ξ 0(t)
∂

∂t
+ ξσ (t, qν)

∂

∂qσ
+

(
dξσ

dt
− dξ 0

dt
q̇σ
)

∂

∂q̇σ
.

A vector field on Y or on J 1Y is called vertical if its projection onto the base is the zero vector
field (i.e. ξ 0 = 0). A form η on J 1Y is called contact if for every section γ of π , J 1γ ∗η = 0.
Similarly, a form η on J 2Y is called contact if for every section γ of π , J 2γ ∗η = 0. Every
k-form for k > 1 is contact. A form is called horizontal, if its contraction by an arbitrary
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vertical vector field vanishes. A 2-form is called 1-contact (respectively, 2-contact), if its
contraction by vertical vector fields is horizontal (respectively, contact). The 1-forms

ωσ = dqσ − q̇σ dt ω̇σ = dq̇σ − q̈σ dt

1 � σ � m, are contact. Note that besides the standard basis of 1-forms on J 1Y (respectively,
J 2Y ), i.e. (dt, dqσ , dq̇σ ) (respectively, (dt, dqσ , dq̇σ , dq̈σ )) one has the basis (dt, ωσ , dq̇σ )
(respectively, (dt, ωσ , ω̇σ , dq̈σ )), adapted to the contact structure. Every k-form is then
generated by forms of this basis by means of the exterior product. In particular, a 1-form
η on J 1Y can be written as

η = η0 dt + ησ dqσ + η̃σ dq̇σ = (η0 + ησ q̇
σ ) dt + ησω

σ + η̃σdq̇σ

and it can be uniquely decomposed into the sum of its horizontal and contact component in
the following way:

π∗
2,1η = (η0 + ησ q̇

σ + η̃σ q̈
σ ) dt + ησω

σ + η̃σ ω̇
σ .

A distribution on J 1Y is defined as a mapping D : J 1Y 	 x → D(x) ⊂ TxJ
1Y ,

associating to every point x ∈ J 1Y a vector subspace D(x) of the tangent space at x. We say
that a distribution D has a constant rank if the dimension of the subspaces D(x) is a constant
(independent of x). A distribution is spanned by a system of local vector fields (ξι), ι ∈ I.
Alternatively, it can be characterized by a system of 1-forms (ηκ), κ ∈ K, such that ηκ(ξι) = 0
for every ι and κ . We write

D = span{ξι|ι ∈ I} D0 = span{ηκ |κ ∈ K}
and call D0 the annihilator of D. A section δ of π1 is called an integral section of D if δ∗η = 0
for every 1-form η belonging to D0.

Now, let us turn to the concept of a mechanical system on a fibred manifold, and to a
geometrical description of its dynamics by means of distributions.

Let us consider a dynamical form on J 2Y , i.e. a 2-form E which in every fibred chart on
J 2Y is expressed as follows:

E = Eσ (t, q
ν, q̇ν, q̈ν) dqσ ∧ dt.

A section γ of the fibred manifold π is called a path of E if E ◦ J 2γ = 0. Writing down
the equations for paths in fibred coordinates we obtain a system of m second-order ordinary
differential equations

Eσ

(
t, γ ν,

dγ ν

dt
,

d2γ ν

dt2

)
= 0 (2)

for the components γ ν(t), 1 � ν � m, of sections γ of π . Hence, we can see that dynamical
forms on fibred manifolds are global objects which enable us to transform the (local) concept
of motion equations to manifolds. Note that equations (2) are very general second-order ODE:
they cover both Lagrangian and non-Lagrangian equations; moreover, they need not admit an
expression in the form of a second-order vector field (i.e. they may be ‘non-solvable’ with
respect to the second derivatives). For the purposes of this paper, we can restrict to the case of
equations which are affine in accelerations q̈ν , i.e. such that

Eσ = Aσ + Bσνq̈
ν 1 � σ, ν � m (3)

whereAσ andBσν are functions depending on (t, qρ, q̇ρ). Instead ofE (which is of the second
order) we consider a first-order object—an equivalence class of local 2-forms on J 1Y , called
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the Lepage class of E, denoted by [α], and defined as follows: α ∈ [α] if and only if the
one-contact part of α equals E. In fibred coordinates where E is given by (3) we have

α = Aσω
σ ∧ dt + Bσνω

σ ∧ dq̇ν + F

whereF is a local 2-contact 2-form on J 1Y , i.e.F = Fσν ω
σ ∧ων . To every α there is naturally

associated the so-called dynamical distribution&α , generated by all the 1-forms iξα, where ξ
runs over the set of all π1-vertical vector fields on J 1Y . In other words, the annihilator of &α
is spanned by the following 1-forms:

Aσ dt + 2Fσνω
ν + Bσν dq̇ν Bσνω

ν.

Apparently, the following assertion holds:

Proposition 2.1. The system of paths of a dynamical form E coincides with the system of
holonomic integral sections of its dynamical distributions in the class [&α].

The Lepage class ofE is called a first-order mechanical system (associated with the dynamical
form E).

The above rather abstract understanding of a mechanical system first proposed in [5] can be
viewed as an appropriate generalization of the symplectic description of mechanical systems.
While the latter is applicable to regular Lagrangian mechanics on tangent spaces, the former
is well adapted to the case when one needs to take into account mechanical systems without
a priori restrictions (e.g. to regularity or variationality), and to study geometric properties of
solutions of the equations of motion on fibred manifolds. This is, in particular, important
in the case when constraints have to be considered, since generally neither regularity nor
variationality in its usual sense is preserved under non-holonomic constraints.

Naturally, within the general scheme, regular and Lagrangian systems appear as particular
cases: a mechanical system [α] is called regular, if the class [&α] contains a dynamical
distribution of rank one. It can be shown [5] that

Proposition 2.2. The mechanical system [α] associated with a dynamical form E on J 2Y ,
E = (Aσ +Bσνq̈ν)ωσ ∧ dt , is regular if and only if any of the following equivalent conditions
holds:

(a) the matrix (Bσν) is everywhere regular;
(b) any dynamical distribution & ∈ [&α] is of rank 1;
(c) all the dynamical distributions belonging to the class [&α] coincide;
(d) the equations for the paths of E can be expressed in the explicit form

q̈σ = −BσνAν 1 � σ � m

where (Bσν) denotes the inverse matrix to (Bσν).

A dynamical form E is called locally variational if in a neighbourhood Vx of every point
x ∈ J 1Y there exists a function L such that, over Vx , the components Eσ of E coincide with
the Euler–Lagrange expressions of L, i.e.

Eσ = ∂L

∂qσ
− d

dt

∂L

∂q̇σ
. (4)

It can be proved [5, 16] that

Proposition 2.3. E is locally variational if and only if, in a neighbourhood Vx of every point
x ∈ J 1Y , the corresponding mechanical system [α] contains a closed 2-form αE , i.e. on Vx ,
there is a form αE ∈ [α] such that dαE = 0. In this case, moreover, the form αE is unique and
globally defined (on J 1Y ).
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The form αE is called the Lepagean equivalent of E and the corresponding mechanical
system is called a Lagrangian system [16].

Now, let us turn to constrained systems. Let 1 � k � m− 1. By a constraint manifold in
J 1Y we shall mean a submanifold Q of J 1Y of codimension k, fibred over Y; we denote by ι
the canonical embedding of Q into J 1Y . By definition, Q is locally defined by a system of k
equations, called non-holonomic constraints, as follows:

f i(t, qσ , q̇σ ) = 0 rank

(
∂f i

∂q̇σ

)
= k 1 � i � k. (5)

Equations (5) can always locally be put into the so-called normal form,

q̇m−k+i − hi(t, qσ , q̇l) = 0 1 � i � k

where 1 � l � m− k. Thus, without loss of generality, one can suppose one has a cover A of
the constraint Q by open (in J 1Y ) sets such that at each of these sets,

f i(t, qσ , q̇σ ) = q̇m−k+i − hi(t, qσ , q̇l). (6)

Consequently, one has for every U ∈ A a system of k linearly independent 1-forms,

ϕi = f i dt +
∂f i

∂q̇σ
ωσ =

(
f i − ∂f i

∂q̇σ
q̇σ
)

dt +
∂f i

∂q̇σ
dqσ 1 � i � k

defined on U , and called constraint 1-forms. The distribution of corank 2k on U annihilated
by the constraint 1-forms ϕi and the 1-forms df i , 1 � i � k, is then called a constraint
distribution, and is denoted by CU .

Denote by I(ϕi) the ideal generated by the constraint 1-forms ϕi , 1 � i � k, on U . A
dynamical form .U on U is called a constraint force or Chetaev force if .U ∈ I(ϕi). Thus
we have

.U = λi ∧ ϕi = −λi0 ∂f
i

∂q̇σ
dqσ ∧ dt.

The horizontal 1-forms λi = λi0 dt (respectively, the functions λi0) are called Lagrange
multipliers. Every Chetaev force satisfies the principle of virtual work:

Proposition 2.4. For every π1-vertical vector field belonging to the constraint distribution,

iξ.U = 0.

A pair (Q,.U) where Q ⊂ J 1Y is a constraint and .U is a Chetaev force is called a
physical constraint structure on U . Considering this structure at each U of the covering A
reflects the physical requirement that the constraint Q is ideal (workless). If [α] is a mechanical
system on J 1Y we put

α.U = α +.U.

In this way we get at each U a new mechanical system [α.U ], called a deformation of [α] by
.U . If the corresponding (unconstrained) dynamical form is E = (Aσ +Bσνq̈ν) dqσ ∧ dt , the
f i = 0 are equations of the submanifold Q ∩ U , and .U is a Chetaev force, then

[α.U ] =
(
Aσ − λi0

∂f i

∂q̇σ

)
ωσ ∧ dt + Bσνω

σ ∧ dq̇ν + F

where F runs over 2-contact 2-forms on U . The deformed equations of motion on U are the
following:
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Proposition 2.5. Let γ be a section of π such that J 1γ is an integral section of the constraint
distribution CU . γ is a path of the deformed mechanical system [α.U ] on U iff

J 1γ ∗iξα.U = 0

for every π1-vertical vector field ξ on U , where α.U is any representative of the class [α.U ].

In fibred coordinates,

f i ◦ J 1γ = 0 Aσ + Bσνq̈
ν = λi0

∂f i

∂q̇σ
along J 2γ. (7)

Thus, locally, we have a system of m + k ODEs for m + k unknowns γ σ (t), λi0(t) from which
both the constraint force and the constrained dynamics can be determined.

The above ‘physical description’ gives us constrained systems modelled as local
deformations of the original mechanical systems, defined in a neighbourhood of the constraint.
Another possibility (expressing a ‘geometrical point of view’) is based on the idea of
representing constrained systems directly as mechanical systems on the constraint submanifold,
i.e. with a reduced number of degrees of freedom (equal tom− k). In fact, this is a geometric
procedure of extracting Lagrange multipliers, since in the ‘reduced’ equations of motion no
undetermined constraint forces appear.

Denote by ι : Q → J 1Y the canonical embedding and put

C0 = span{ι∗ϕi, 1 � i � k}
where ϕi runs over all constraint 1-forms subordinate to a cover of Q. It can be proved that

Proposition 2.6. C is a distribution on the constraint Q (of corank k with respect to Q).

It is called the canonical distribution or Chetaev bundle [5]. Clearly, it is a geometric realization
of the concept of ‘possible general displacements’; its π1-vertical subdistribution represents
‘virtual generalized displacements’, and its π1,0-vertical subdistribution could be called a
distribution of ‘virtual velocities’. The pair (Q, C) is then called a geometrical constraint
structure on J 1Y . The ideal on Q generated by the 1-forms annihilating the canonical
distribution is called the constraint ideal and is denoted by I(C0). Now, with the help of
the canonical distribution C one can obtain an intrinsic description of mechanical systems
constrained to a submanifold Q of J 1Y as follows: if [α] is an unconstrained mechanical
system, put for every α ∈ [α]

αQ = ι∗α mod I(C0).

Thus αQ is an equivalence class of 2-forms on the constraint Q. We denote by [αQ]
the mechanical system generated by αQ. It is easy to see that if α1, α2 ∈ [α] then
[(α1)Q] = [(α2)Q]. The class [αQ] is called the constrained system related to the mechanical
system [α] and the constraint structure (Q, C). Note that, by definition, a form belongs to
[αQ] if and only if it is a sum of ι∗α, a 2-contact 2-form and a constraint 2-form. By the
following theorem the above ‘physical’ and ‘geometric’ description of a constrained system
are equivalent:

Proposition 2.7. The constrained system [αQ] does not depend upon deformation of [α], i.e.
on Q ∩ U , for every constraint force .U ,

[(α.U )Q] = [αQ].
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After some technical calculations we obtain a representativeαQ of the class [αQ] expressed
in fibred coordinates in the basis (dt, ωl, dq̇ l), 1 � l � m− k, as follows (see [5, 6]):

αQ =
m−k∑
l=1

Alω
l ∧ dt +

m−k∑
l,s=1

Blsω
l ∧ dq̇s

where

Al =
(
Al +

k∑
p=1

Am−k+p
∂hp

∂q̇l
+

k∑
s=1

(
Bl,m−k+s +

k∑
j=1

Bm−k+j,m−k+s
∂hj

∂q̇l

)(
∂hs

∂t
+
∂hs

∂qσ
q̇σ
))

◦ι

(8)

Bls =
(
Bls +

k∑
r=1

(
Bl,m−k+r

∂hr

∂q̇s
+ Bm−k+r,s

∂hr

∂q̇l

)
+

k∑
r,j=1

Bm−k+j,m−k+r
∂hj

∂q̇l

∂hr

∂q̇s

)
◦ι. (9)

Now, the equations of motion have the following form:

Proposition 2.8. A section γ of π is a path of the constrained system [αQ] if and only if J 1γ is
an integral section of the canonical distribution C, and for every π1-vertical vector field ξ ∈ C
it satisfies the equation

J 1γ ∗iξαQ = 0 (10)

where αQ is (any) 2-form belonging to the equivalence class [αQ].

In fibre coordinates this gives the following system of m − k second-order ODEs, and k
first-order ODEs for the components γ 1, . . . γ m of γ :(

Al +
m−k∑
p=1

Blpq̈
p

)
◦ J 2γ = 0 f i ◦ J 1γ = 0. (11)

Equivalently, motion equations can be interpreted within the differential systems approach
as equations for holonomic integral sections of a constrained dynamical distribution &αQ
associated with the mechanical system represented by αQ, which is defined to be a
subdistribution of the canonical distribution C, generated by 1-forms iξαQ, with ξ running
over the set of all π1-vertical vector fields belonging to C. In analogy with the unconstrained
case, this leads to a concept of regularity for constrained systems as follows [5]: a constrained
system is called regular if it is represented by a constrained dynamical distribution of
rank 1.

Proposition 2.9. Regularity is equivalent with the condition that the (m−k)× (m−k)-matrix
(Bsl) is regular.

Note that a constrained system corresponding to a regular mechanical system need not
be regular. Moreover, a constrained system of a Lagrangian (variational) system need not be
variational in the standard sense.

3. The relativistic particle as a non-holonomic mechanical system: the case of constant
rest mass

In this section we show that a particle in the theory of special relativity can be viewed as a
typical constrained mechanical system with one nonlinear non-holonomic constraint.
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Let us suppose that a relativistic particle with the rest mass m0 = constant > 0 moves
in a variational force field. The appropriate underlying fibred manifold for its description is
R × R4 → R with the base R, playing the role of a space of parameters (parametrizing
spacetime curves in R4), and the four-dimensional copies of R4 as the fibres; we consider
the manifold R4 with the standard structure of spacetime in the special relativity theory,
i.e. endowed by the Minkowski metric g = (gσν), where glp = −δlp and gl4 = g4l = 0
for 1 � l, p � 3, and g44 = 1. In (global) canonical fibred coordinates (s, qσ , q̇σ ) on
J 1(R × R4) = R × R4 × R4 the corresponding Lagrange function has the following
form:

L = −1

2
m0

[
(q̇4)2 −

3∑
p=1

(q̇p)2

]
+ q̇σ φσ − ψ (12)

where 1 � p � 3, 1 � σ � 4, φσ andψ areC1-differentiable functions depending on (ql, q4),
1 � l � 3, but not on the base parameter s. The corresponding equations of motion are the
Euler–Lagrange equations of the Lagrangian (12); they are second-order ODE for sections γ
of the fibred manifold R × R4 → R,

El ◦ J 2γ = 0 E4 ◦ J 2γ = 0 1 � l � 3

where the Euler–Lagrange expressions Eσ = Aσ + Bσνq̈ν are of the form

El = −m0q̈
l + q̇σ

(
∂φσ

∂ql
− ∂φl

∂qσ

)
− ∂ψ

∂ql
E4 = m0q̈

4 + q̇σ
(
∂φσ

∂q4
− ∂φ4

∂qσ

)
− ∂ψ

∂q4
.

Thus, by (3), we have

Al = q̇σ
(
∂φσ

∂ql
− ∂φl

∂qσ

)
− ∂ψ

∂ql
1 � l � 3 A4 = q̇σ

(
∂φσ

∂q4
− ∂φ4

∂qσ

)
− ∂ψ

∂q4
(13)

Blp = −m0δlp B4l = Bl4 = 0 B44 = m0 1 � l, p � 3. (14)

In keeping with the special relativity theory, we shall consider one single non-holonomic
constraint (k = 1) in J 1(R × R4), given by the equation

(q̇4)2 −
3∑
p=1

(q̇p)2 − 1 = 0. (15)

This equation defines a smooth manifold Q in J 1(R×R4) of codimension one. Apparently, Q
is not connected, being the union of two connected components Q+ = {(s, qσ , q̇σ ) ∈ Q | q̇4 >

0} and Q− = {(s, qσ , q̇σ ) ∈ Q | q̇4 < 0}. We shall consider the physically relevant component
Q+ given by the equation

q̇4 =
√√√√1 +

3∑
p=1

(q̇p)2. (16)

Note that the open setU = {x ∈ J 1(R×R4) | q̇4(x) > 0} with the canonical fibred coordinates
is a global chart covering the constraint manifold Q+. In the notation of section 2 put

f = f 1 = q̇4 −
√√√√1 +

3∑
p=1

(q̇p)2 h = h1 =
√√√√1 +

3∑
p=1

(q̇p)2. (17)
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On U we obtain the constraint ideal generated by the 1-form

ϕ =
q̇4 −

√√√√1 +
3∑
p=1

(q̇p)2

 ds −
3∑
l=1

q̇ l√
1 +

∑3
p=1(q̇

p)2
ωl + ω4

and the corresponding Chetaev force depending upon one Lagrange multiplier λ0 ds,

.U = λ0

3∑
l=1

q̇ l√
1 +

∑3
p=1(q̇

p)2
ωl ∧ ds − λ0 ω

4 ∧ ds.

The motion equations of the deformed mechanical system now become

−m0q̈
l + q̇σ

(
∂φσ

∂ql
− ∂φl

∂qσ

)
− ∂ψ

∂ql
= −λ0q̇

l√
1 +

∑3
p=1(q̇

p)2
(18)

m0q̈
4 + q̇σ

(
∂φσ

∂q4
− ∂φ4

∂qσ

)
− ∂ψ

∂q4
= λ0. (19)

Let us express the constrained system as a mechanical system on the constraint manifold
Q+. The canonical embedding of Q+ into the first jet prolongation of the underlying fibred
manifold has the form

ι : Q+ 	 (s, ql, q4, q̇l) → ι(s, ql, q4, q̇l) =
s, ql, q4, q̇l,

√√√√1 +
3∑
p=1

(q̇p)2

 ∈ J 1Y.

Using the relations (8) and (9) we obtain the functions (Al, Bls), 1 � l, s � 3, the components
of the 2-form αQ+ on Q+:

Al =
(
Al + A4

∂h

∂q̇l

)
◦ ι =

3∑
j=1

q̇j
(
∂φj

∂ql
− ∂φl

∂qj

)
− ∂ψ

∂ql

+

(
q̇j
(
∂φj

∂q4
− ∂φ4

∂qj

)
− ∂ψ

∂q4

)
q̇ l√

1 +
∑3

p=1(q̇
p)2

+

√√√√1 +
3∑
p=1

(q̇p)2
(
∂φ4

∂ql
− ∂φl

∂q4

)
(20)

Bls =
(
Bls +

(
Bl4

∂h

∂q̇s
+ B4s

∂h

∂q̇l

)
+ B44

∂h

∂q̇l

∂h

∂q̇s

)
◦ ι = −m0

(
δls − q̇ l q̇s

1 +
∑3

p=1(q̇
p)2

)
.

(21)

Recall that the 2-form αQ+ represents the constrained mechanical system, and the components
of αQ+ define the left-hand sides of the corresponding motion equations. Hence, the reduced
system of equations of motion is of the form

(Al + Blpq̈
p) ◦ J 2γ = 0.

Since the matrix (Blp) is regular, we can write the equations of motion in the explicit form

q̈p + Ap = 0 (22)
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with

Ap = B
pl
Al B

−1 = (B
pl
).

The constrained system is described by equations (22) together with the equation of the

constraint (16). For the inverse matrix B
−1 = (B

pl
) we obtain

B
−1 = − 1

m0


1 + (q̇1)2 q̇1q̇2 q̇1q̇3

q̇1q̇2 1 + (q̇2)2 q̇2q̇3

q̇1q̇3 q̇2q̇3 1 + (q̇3)2


i.e.

B
pl = − 1

m0
(δpl + q̇pq̇l) 1 � p, l � 3. (23)

After some calculations we obtain the functions Ap in equations (22):

Ap = B
pl
Al = − 1

m0

3∑
l=1

δpl q̇j (∂φj
∂ql

− ∂φl

∂qj

)
+ δpl

√√√√1 +
3∑
s=1

(q̇s)2
(
∂φ4

∂ql
− ∂φl

∂q4

)

−
δpl ∂ψ

∂ql
+ q̇pq̇l

∂ψ

∂ql
+ q̇p

∂ψ

∂q4

√√√√1 +
3∑
s=1

(q̇s)2

. (24)

Let us denote q4 = t as usual, and consider on J 1(R × R4) new coordinates (s, ql, t, vl, q̇4),
defined by the transformation rule

q̇ l = vlq̇4.

Note that the meaning of the new coordinates is the following: (t, ql, vl) are coordinates
on J 1(R × R3), adapted to the fibration R × R3 → R of the manifold R4—the fibre of
the fibred manifold R × R4 → R. In these coordinates the constraint Q+ is given by the
equation

q̇4 = 1√
1 − v2

(25)

where v2 = ∑3
j=1(v

j )2 = ∑3
j=1(dq

j/dt)2 is the (three-dimensional) velocity of the particle.
Now, equations (22) with the functions Ap given by (24) can be transformed by eliminating
the parameter s as follows: since we have for p = 1, 2, 3,

q̈p = d

ds
(q̇p) = d

ds

(
dqp

dt
· dt

ds

)
= 1√

1 − v2

d

dt

(
vp√

1 − v2

)
(26)

we obtain

1√
1 − v2

· d

dt

(
m0v

p

√
1 − v2

)
+m0Ap = 0 (27)

and using (25) we obtain for (Ap), 1 � p � 3,

Ap = − δpl

m0

√
1 − v2

(
vj
(
∂φj

∂ql
− ∂φl

∂qj

)
+

(
∂φ4

∂ql
− ∂φl

∂t

))
+

1

m0(1 − v2)

(
(δpl(1 − v2) + vpvl)

∂ψ

∂ql
+ vp

∂ψ

∂t

)
.
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We denote �A = (φl) and φ4 = −V . The vector form of equations (27) multiplied by
√

1 − v2

is then

d

dt

(
m0�v√
1 − v2

)
= �v × rot �A− ∂ �A

∂t
− grad V + �B (28)

where we have denoted �v = (vl), and

�B = −
√

1 − v2 gradψ − �v√
1 − v2

(
∂ψ

∂t
+ �v gradψ

)
= −

√
1 − v2 gradψ − �v√

1 − v2

dψ

dt
. (29)

In this way we have obtained the following result. The original problem—to study the
mechanical system on R × R4 → R, defined by the Lagrangian (12), and subject to the
standard relativistic constraint gσνq̇σ q̇ν = 1, has been transferred to an equivalent problem—
to study the unconstrained ‘three-dimensional particle’, moving in the force field

�F = �FL + �B
where �FL is the standard Lorentz force, and �B is defined by (29). Note that both �FL and �B are
force fields on Q+. Consequently the following proposition holds.

Proposition 3.1. A section γ of the fibred manifold R × R4 → R, γ (s) = (s, t (s), ql(t (s))),
is a path of a relativistic particle with a constant rest mass m0 > 0 moving in a potential
force field given by a 4-potential ( �A,V ) and a scalar potential ψ if and only if along J 2γ the
following equations are satisfied:

d

dt

(
m0�v√
1 − v2

)
= �v × rot �A− ∂ �A

∂t
− grad V −

√
1 − v2 gradψ − �v√

1 − v2

dψ

dt
(30)

E ≡ m0q̇
4 = m0√

1 − v2
. (31)

The first of these equations is the equation of motion, while the second one is the energy
equation.

Let us discuss the geometric and physical meaning of the force �B in more detail.
For �B = �0 we obtain the well known vector equation for a particle moving in the variational

force field described by a vector potential �A and scalar potentialV . This equation can be derived
from the Lagrange function

L = −m0

√
1 − v2 + �v �A− V. (32)

It is interesting to note the following:

Proposition 3.2. The condition �B = �0 is a necessary and sufficient condition for the motion
equation (30) be variational, i.e. identical with the Euler–Lagrange equation of some Lagrange
function.

Actually, as proved in [17, 18] (cf also [19]), a force �F in the equation

d

dt

(
m0�v√
1 − v2

)
= �F (33)
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is variational (potential) if and only if �F is a ‘Lorentz-type’ force, i.e. iff there exists a vector
field �w and a function ϕ on the spacetime such that

�F = �v × rot �w − ∂ �w
∂t

− grad ϕ.

Comparing this result with (30) we can see that this means that �w and ϕ are identified with �A
and V , respectively, and �B = 0, proving the above assertion.

Let us turn to discuss the case �B �= �0. To investigate the meaning of the second term of
�B, i.e. the force field

�Fc = − �v√
1 − v2

dψ

dt

let us proceed as follows. Consider the deformed equations of motion (18) and (19). We can
see that along the paths of the deformed mechanical system,

m0gσνq̇
σ q̈ν +

(
∂φν

∂qσ
− ∂φσ

∂qν

)
q̇ν q̇σ − ∂ψ

∂qσ
q̇σ = λ0

gσνq̇
σ q̇ν√

1 +
∑3

p=1(q̇
p)2
.

The second term on the left-hand side of this equation is zero because of the antisymmetry of
the expression in brackets. Since only solutions satisfying the equation of the constraint (15)
are admissible, i.e. such that gσνq̇σ q̇ν ◦ J 1γ = 1 and consequently, gσνq̇σ q̈ν ◦ J 2γ = 0, we
finally obtain

∂ψ

∂qσ
q̇σ = dψ

ds
= − λ0√

1 +
∑3

p=1(q̇
p)2

along admissible paths. Comparing this with the expression for the Chetaev force we can see
that

.l = −q̇ l dψ
ds

are its (space) components. In the coordinates (s, t, ql, vl, q̇4) this reads

.l = −vl dψ

dt
(q̇4)2 = − vl

1 − v2

dψ

dt
.

Thus we have obtained that along any admissible trajectory the term

− vl

1 − v2

dψ

dt

has the geometric meaning of a constraint force. Therefore, and taking into account that (28)
is equation (27) multiplied by the factor

√
1 − v2, we can call �Fc the induced constraint force.

Summarizing, we obtained that the second term in the expression (29) of �B is the induced
constraint force.

Now, we shall discuss the meaning of the first term �D = −√
1 − v2 gradψ in �B. To this

end we rewrite equation (30) in a slightly different form,

d

dt

(
m0�v√
1 − v2

)
+

�v√
1 − v2

dψ

dt
= �v × rot �A− ∂ �A

∂t
− grad V −

√
1 − v2 gradψ

and we suppose for simplicity the electromagnetic force be equal to zero. Put

µ = 1

m0
ψ m̃0 = m0e

µ. (34)
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In terms of the new scalar potential µ and the function m̃0 (which both are functions of the
spacetime variables) the above equation becomes

d

dt

(
m̃0e

−µ�v√
1 − v2

)
+
m̃0e

−µ�v√
1 − v2

dµ

dt
= −m̃0 e

−µ√1 − v2 gradµ

i.e.

e−µ
d

dt

(
m̃0�v√
1 − v2

)
= −m̃0 e

−µ√1 − v2 gradµ.

Since e−µ �= 0, this is equivalent to

d

dt

(
m̃0�v√
1 − v2

)
= −m̃0

√
1 − v2 gradµ = −

√
1 − v2 grad m̃0.

Accordingly, we can state the following result which is in agreement with a proposal due to
Dicke [15] adapting the theory of relativity to the Mach principle:

Proposition 3.3. The motion of a relativistic particle with a constant rest massm0 > 0, moving
in a force field given by a scalar potential ψ is described by the equation

d

dt

(
m0�v√
1 − v2

)
= −

√
1 − v2 gradψ − �v√

1 − v2

dψ

dt
(35)

or equivalently, by the equation

d

dt

(
m̃0�v√
1 − v2

)
= −

√
1 − v2 grad m̃0 (36)

where

m̃0 = m0e
µ µ = 1

m0
ψ.

Thus this particle can be viewed as possessing a non-constant rest mass m̃0 depending upon
a scalar potential µ, and subject to the force

�̃D = −
√

1 − v2 grad m̃0.

We shall call the scalar potential µ the Dicke field and the force �̃D the Dicke force. We
can see that the Dicke field has the properties assumed by Dicke in [15]: namely, the Dicke
force is attractive and proportional to

√
1 − v2. At the same time, the form of the dependence

of m̃0 upon µ ensures that �̃D depends upon m0. Moreover, since m0 > 0, the obtained mass
of a particle is everywhere positive. It remains unchanged if and only if the field µ vanishes,
and the dependence of the mass upon µ is the same for all particles. These facts agree with
the famous Eötvös experiment stating the equivalence of gravitational and inertial mass.

Finally, note that the requirement that the induced constraint force �Fc vanishes identically
means that dψ/dt = 0, i.e. ψ = constant on the constraint. More formally we can write

Proposition 3.4.

�Fc = 0 ⇐⇒ dψ/dt = 0.
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Indeed, by assumption, ψ is C1-differentiable, hence dψ/dt is continuous, and,
consequently, dψ/dt (x) �= 0 at a point x means that there exists a neighbourhood U of x
in Q+ such that dψ/dt �= 0 on U . Denote by V the submanifold of Q+ defined by the equation
�v = 0. Obviously, V is a closed submanifold of codimension three. Since �Fc = 0 on Q+, we
have dψ/dt = 0 on Q+ − V . Next, if x ∈ V would be such that dψ/dt (x) �= 0 then it should
hold dψ/dt �= 0 on an open neighbourhood U ⊂ Q+ of x, and due to �Fc = 0 one would get
�v = 0 on U , i.e. U ⊂ V , a contradiction. Thus dψ/dt = 0 on the constraint Q+. The converse
implication, i.e., ψ = constant �⇒ �Fc = 0 is trivial.

As a direct consequence of the above proposition we obtain that the condition �Fc = 0
implies that �B = 0 and the motion equations (30) reduce to the ‘standard’ relativistic motion
equations. Conversely, µ = constant means that the mass of the particle is a constant and the
Dicke force vanishes. Hence, we can conclude that approaching the relativistic mechanics as
a theory with non-holonomic constraints one gets a unified model for the ‘standard’ and Dicke
relativity theory as follows.

The ‘standard’ approach (based upon the Lagrange function (32)) corresponds to the
assumption that the induced constraint force vanishes. On the other hand, Dicke relativity
theory (taking into account the Mach principle) comes from the assumption that the induced
constraint force is non-trivial.

Remarkably, the motion of a charged particle in an electromagnetic field is different in
presence of a Dicke field.

Proposition 3.5. In the presence of an electromagnetic field the motion equation (36) takes
the form

d

dt

(
m̃0�v√
1 − v2

)
= eµ �FL + �̃D (37)

where �FL is the standard Lorentz force.

Thus, the Dicke field can strengthen or weaken the Lorentz force. It seems that interaction
of this kind could be responsible, for example, for the stability of atoms.

In what follows we shall call the factor eµ the cushon charge, or simply cushon.

4. The relativistic particle as a non-holonomic mechanical system: the case of
non-constant mass

Now, let us suppose that the mass of a particle is a (general) function of spacetime coordinates.
Replacing m0 in the Lagrangian (12) by m(qλ) > 0 we obtain the corresponding Euler–
Lagrange expressions Eσ = Aσ + Bσνq̈ν , with

Al = q̇σ
(
∂φσ

∂ql
− ∂φl

∂qσ

)
− ∂ψ

∂ql
− 1

2

∂m

∂ql

(
(q̇4)2 −

3∑
p=1

(q̇p)2

)
− ∂m

∂qj
q̇j q̇l − ∂m

∂q4
q̇4q̇ l

1 � l � 3

A4 = q̇σ
(
∂φσ

∂q4
− ∂φ4

∂qσ

)
− ∂ψ

∂q4
− 1

2

∂m

∂q4

(
(q̇4)2 −

3∑
p=1

(q̇p)2

)
+
∂m

∂qj
q̇j q̇4 +

∂m

∂q4
(q̇4)2

Blp = −mδlp B4l = Bl4 = 0 B44 = m 1 � l, p � 3.

Since the constraint is again expressed by equation (15) (respectively, (16)), the constraint
ideal and the constraint force remain the same as in the case of constant rest mass. Applying



The relativistic particle as a mechanical system with non-holonomic constraints 3873

the same procedure as in section 3 we obtain the constrained system represented by the motion
equations (11) where the functions Al and Bls , 1 � l, s � 3, are of the following form:

Al =
3∑
j=1

q̇j
(
∂φj

∂ql
− ∂φl

∂qj

)
− ∂ψ

∂ql
+

(
q̇j
(
∂φj

∂q4
− ∂φ4

∂qj

)
− ∂ψ

∂q4

)
q̇ l√

1 +
∑3

p=1(q̇
p)2

+

√√√√1 +
3∑
p=1

(q̇p)2
(
∂φ4

∂ql
− ∂φl

∂q4

)
− 1

2

 ∂m
∂ql

+
∂m

∂q4

q̇ l√
1 +

∑3
p=1(q̇

p)2


and

Bls = −m
(
δls − q̇ l q̇s

1 +
∑3

p=1(q̇
p)2

)
.

Analogous calculations such as those presented in section 3 lead to the following vector
equation of motion:

m
d

dt

( �v√
1 − v2

)
= �FL + �B + �Bm (38)

with the standard Lorenz force �FL, the �B as in section 3 (cf (29)), and with

�Bm = −1

2

(√
1 − v2 gradm +

�v√
1 − v2

dm

dt

)
. (39)

To discuss this equation in more detail, let us rewrite it in the following (equivalent) form

m
d

dt

( �v√
1 − v2

)
+

�v√
1 − v2

d

dt

(
1
2m + ψ

) = �FL −
√

1 − v2 grad
(

1
2m + ψ

)
. (40)

Taking into account the deformed equations of motion (7), and applying similar arguments
to those in section 3 we obtain the following result:

Proposition 4.1. The induced constraint force is given by the formula

�Fc = − �v√
1 − v2

dχ

dt
where χ = ψ − 1

2m. (41)

Thus, in terms of the constraint force, equation (40) reads

d

dt

(
m�v√

1 − v2

)
= �FL + �Fc −

√
1 − v2 grad(m + χ).

Now, we can consider two different possibilities:

4.1. Zero induced constraint force.

This case is obtained from the assumption that (up to an additive constant)

ψ = 1
2m.

Obviously, equation (40) takes then the ‘standard form’ of motion equation for a relativistic
particle with non-constant mass

d

dt

(
m�v√

1 − v2

)
= �FL −

√
1 − v2 gradm. (42)
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Recall that this equation comes as the Euler–Lagrange equation from the Lagrangian

L = −m
√

1 − v2 + �v �A− V. (43)

Note that equation (36) obtained in the previous section can be viewed as a particular case
of (42) if in the latter one takes m = m0e

µ and �FL = 0. However, for a charged particle
moving in an electromagnetic field the corresponding equations (37) and (42) become quite
different: in (37) the Lorentz force is modified by the cushon charge eµ.

4.2. Non-zero induced constraint force.

We shall show that the assumption �Fc �= 0 leads to a generalized motion equation for a particle
with non-constant mass, including equation (37) (and hence also the Dicke relativity) as a
particular case.

Consider the motion equation (40). Instead of the functionsm and ψ we can equivalently
introduce new functions f and µ as follows:

m = m0 + f χ = m0µ

where m0 > 0 is a constant. Rewriting (40) in terms of f and µ, we obtain

d

dt

(
(m0 + f )�v√

1 − v2

)
+

m0�v√
1 − v2

dµ

dt
= �FL −

√
1 − v2 grad(m0 + f +m0µ).

Multiplying this equation by the cushon eµ and denoting by

m̃ = meµ m̃0 = m0e
µ f̃ = f eµ �̃FL = eµ �FL

the corresponding cushon quantities, we obtain after straightforward calculations the following
motion equation, equivalent with (40):

d

dt

(
m̃�v√

1 − v2

)
= �̃FL −

√
1 − v2 grad m̃ + f̃

(√
1 − v2 gradµ +

�v√
1 − v2

dµ

dt

)
. (44)

We can see that, as expected, equation (37) is a particular case of (44) for f = 0. Similarly,
equation (42) is contained in (44), since, by the same arguments as in section 3, �Fc = 0 implies
µ = constant.

Proposition 4.2. Within the approach of the theory of non-holonomic systems, equation (44) is
the most general motion equation, representing the dynamics of a charged relativistic particle
with positive non-constant mass, moving in an electromagnetic field and a Dicke field µ.
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